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PERFWCE OF AN ACTIVE/PASSIVE HYBRID

UTILLZING VAPOR TRANSPORT*

by

James C. HecJstran

SOIAR SYSTEM

Los Alamos National Laboratory

Los Alanms, New Mex!co 87545

ABSTRACT

Vapor-phase heat-transport systems are being tested in two of
the passive tist cells at Los Alanms. The sys~ms consist of an
active fin-and-tube collector and a condenser inside a water storage
tank. me refrigerant, R-llP can be returned to the collector with a
punp or with a self-punplng schem. A canputer model was developed
to predict the behavior of the system, after which we used the
compu~r ta predict the annual performance of these systems in five
cltie~. The report compares the measured and the predicted results
as well a.ithe systen’s sensitivity to several parameters.

INTRODUCTION

Vapor-transport sysums can offer perfornmce improvenn2ntsover current

active and passive solar e~ergy space heating systems because of higher

heat-tranfer rates obtained in the evaporation and condei)sationprocess and

lower heat losses at night. Me are currently investigating a system

consisting of an active-type solar collector with passive water storage, The

passive discharge operates at lower temperatures, thereby improving

performance. Previous system studies have shwn substantial improvements in

Work performd under the auspices of the US Dcparbmnt of Energy, Office of

Solar #eat Technologies.
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perfommnce over other passive systems. Moreover, vapor systims should

have sfmpler controls than conventional active systems and, therefore,

Improved reliability.

In this program, w are addressing situations In which locating the

collector belw the condenser Is not feasible, such as systems with collectors

on the south side of a bui:dlng or on the roof w?th storage unfts within the

occupied space.

The first systemwe built has the collector on the south wall of Test Cell

t3wlth all piping and accumulators inslck the test cell. He have run the

collector both vertically and tilted at latitude. Early results from this

system wre reported In Ref. 3. More canplete performance data and computer

validation on this system are the subject of thfs report.

A second self-punplng systen with the collector on the rmf of Test Cell 7

has been In operation since December 1983. The perfornmce of this system +s

being evaluated.

DESCRIPTION OF EXPERIMENT

A schmatic of the vapor-transport system buflt Into Test Cell 8 is shwn

in Fig. 1. One selective-rurface, single-glazed collector with a gross area

cf ?4.2 ft2 (aperture area 22.4 ft2), with a copper absorber plate and

3/8-in. copper tubes spaced 2 in. on center, was mounted on the south wall.

Thewa@r Wk inside the test cell nmsures 36 in. by 12 in. by96 II. high.

It was filled tua ckpth of 78 In. for a total volume of 154 gallons. The

con~nser submsrsed in the water was a coil of 3/8-in. id. copper tubing

approximately 16 ft long; the piping connecting the various components on the

sys~m was l/2-in. u.d. hard copper tubing. The pump, grossly oversized fur

this particular experiment, was a positive-displacement diaphragn type with a

constant flow rate cf 2 gpm. Ue controlled the pump with a float switch In a

receiver on the inlet of the punp.

Ue have also ope:dwd a self-pumping nrtde,as shown in the schematic in

Fig. 2. The condensa@ In the condense” flows through the check valve and up

fnto the accunwlator bccausc of the lower saturation temperature an? pressure

in the accumulabr. To dump the liquid in the accumulator back into the

collector we nmst equalize the pressur’eon both sides of the loop by opening

a solenoid v~lve that Is operated by an ele~’tricfloat swttch inside t!]e

accumulator. The hot gas from the collect~r rust condens~ and cool in the
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accumulator before the cycle can be repeatid. The heat lost from the

accumulator Is delivered directly to the r-. The check valves used In the

self-p-ping conflguratlon ure In-n ne, 3/8-in. refrigerant, spring-loaded

check valves.

All of the Wt cells have electric heatirs controlled by the

computer-based, data-acquisition sys~; the rosa tuaperature of each cell is

scanned every 20 seconds. Uhen the Waperature drops below the setpolnt, the

heaW ts turned on. The cells have a controlled Inflltratlom of four alr

changes per hour.

EXPERIMENTAL RESULTS

Several temperatures in the test cel1 are il1ustrated In FIg. 3 with the

system In the self-punplng mode. The plots shou the follodng: tie

temperature of the abso~er surface nsasured 7 in. fram the top of the

CO1lectir, the saturation tasnperaturecalculated fran the pressure measulredat

the collector wtlet, the temperature masured at the top of storage, th~ room

temperature, and the ti lent temperature. The CO11eclxr surface temperature

is a nmxlnum of 7-F higher than the saturation temperature and Is 42°F higher

than the sWage temperature at noon- The saturation temperature and the

temperature at collector outlet are essentially identical. The average daily

swing ?n storage temperature Is 1‘“F.

The test cell was nmlntdlned at a ~nunum setpofnt of 65*F with auxlllary

heat. A detailed plot of ‘tievarious temperatures measured In the test cell

ts shfmn in Fig. 4. The plot sh~s the cycllng of the systim Increase ta a

nuxlmun at noon. The CO1‘IectorIs seen to “ry obt at the begfnnlng and the

cnilof the day as the cycling stops. TIM pressures masured on the CO11ector

and accumulator sides of the loop are plotted In Fig. 5. The pressure

dlfference shmn In Fig. 6 Is about 5 PSI except when the systm dumps;

Is the required pressure head to 11ft t!!eliquid 8 feet up Inti the

accunulatur.

5 psl

The altirna+~ nmde of operuitlcnInvolves r,turning the liqufd @ the

collectir with a punp. This mode guarantees that the collector is full and

the c~ndenser Is dry. The pump is controlled by a float switch In the

receiver at the pump Inlet. Typically,

$econds every 2-1/2 mlnutes, resulting -

energy usage. A 2-day temperature plot
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In Fig. 7. The temperature behavior is alnmt identical ti that of the

self-punping mOCkPo The temperature measured 12 in. fran the bottom of the

stirage tank is alxwt 10”F hotter in this wde than in the self-pumping nmde,

indicating that the condenser is dryer.

Daily performance is ktermined by an energy balance on the test cell

The solar energy delivered ta each test cell is determined by subtracting

auxiliary energy and any change in stired energy from the tist cell heat ‘

the load coefficients for each test cell are determined by nonsolar load

calibration tists. lbre details nmy be found in Refs. 4 and 5. Load

calibration tests were performed February 3-8, 1984, by covering the

the

0ss

collectors and valving off the sys+~m. The daily CO11ector output or anmunt

of energy delivered ti the test cell is shown in Fig. 8 as a function of daily

solar radiation incident on the CO1lector. The average efficiency

(output/Incident) for the month of January 1984 was 45%; efficiency when the

incident so’ar radiation is 2000 Btu/ft2 day is 49%. The performance from

January 1-11 and fran January 15-31 was identical, proving that the

self-pnping mdf? and the ns?chanical-pumping nmde performd nearly the sam.

DESCRIPTION OF CCMPUTER M(XIEL

A compW?r code used previously for active 1iquid systim studies (Refs.

5-9) was modified to simula~ an acti#e/passive hybrid system with vapor

transport. The code Is a system of equations solved hourly to obtain an

energy balArlceon the systen. The hourly energy terms are sinned into dally,

nmnthly, and yearly energy quantities.

A schematic of the model’s parameters is shown in Fig. 9. The coae

calcula~s the collector output, knowing the condenser @mperature, the

anbient temperature, and the incident solar radiation. The pipe losses to

both the outdoors and intiors are then subtracted from the COIlector output to

obtain the stirage input. An energy balante Is performed on the storage to

obtain a n- h~rly storage temperature. An energy balance ts likrwlse

performed on the romn W obtain a new hourly roan temperature.

The collector nudel consists of an energy balance on the collector. First

we calculau the energy incident on the absorber surface by accounting for the

reflectance and the absorptance of the glazing. An estimated absorber

Wnparature is then us-’ to calculab? the convective heat loss, the radiation

heat loss, the back-sids heat 10ZS, and the energy stored In the CO1lector
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since the previous hour. The collector output is calculawd from the

dlffwence between the absorber temperature and the storage temperature and a

coefficient derived from the collector flow rate, the heat-transfer

coefficient between the absorber and the fluld, and the heat-transfer

coeff~clent of the conc&nser. liethen Itarate on the absorber temperature to

obtain an ener~ balante.

Room temperature Is control1ed to an upper-bwnd temperature (TRMAX) by

venting energy fraa tbe space when the upper bound Is reached. Llkdse, a

lower-bound Waperature Is controlled by adding auxllIary heat to tie room.

VALIDATION RESULTS

The data set chosen for the valIdation stwdy was the nmnth of January

1984. The vap~r system In Test Cell 8 was run In the self-paplng ❑ode for

the first 11 da,~sof the mnth and In the mchanlcal -pumping mde the

remainder of MI? month. Various problems in the data were encountered on

January 12, 14, and 27, so that they were left out of the comparison.

me canparlson of the daily results Is given In Table I and Figs. 10,

11, ~d 12. This is a comparison of the daily masured results th t were

obtained by an energy balance on the test cell as explained above. The

ovei-allagrem?nt, as shcwn Dy the totals In Table I, Is excellent. The

collector output agrees within 1%, the load agrees within 32, and the

auxiliary agrees within 5%. The building load coeff’ ‘:ent was identical U

the value (28.3 Btu/h “F) used w determine the experimental heat lGSS from

the test cell. The difference in t’]et’tals is attributable to the difference

in the measured and calculated rocm (cell) temperatures. The measured hourly

solar radiation was used to drive I,ieslnulation nmdel . The maningful

calculated parame~r is the collecll~r output, which can be adjusted by

selecting the appropriate input par meters.

Comparison of calculated and m( sured hourly results was also made. The

parmeters compared were the absorkY temperature (TC), the CO1lector outlet

tanperaturc (TCOUT), the average st ?ge temperature (TS), and the roan

temperature (TRM). The first 16 d ~~ are sham In Figs. 13a-d and the last 16

days of the month are shown in Fig ~4a-d. On this broad scale we s- that

the agreement is very good. Furth~:n ‘e, there seems m be no difretence

between the first part of the montl i “Ae self-punping mode and the last pa,”t

of the nmnth w’lenthe pump was oper: j. A more detailed comparison is shown
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for January 7-8 in figs. 15a-d and for January 24-25 in Figs. 16a-d. These

plots shw a lag of about 1 hour in the calculated values behind the measured

values.

The final paramters selected In this validation process are given in

Table II. Various input parameters were adjusted to obtain a reasonable

comparison bet=en the calcula~d and nmasured results while keeping the input

parameW wfthfn s- realfstfc values. The collector absorber and outlet

tea!perafams could be adjusted by varyfng the concknser heat-transfer

coefficfant (UH). The collector heat output also varied with thfs parameter.

A final valae of UH = 7 Btu/h ft~ ● F see~d to give the best result.

This parame~r Is a function of the actual dry condenser area and the

heat-transfer c~fffcfentbet~en the conknser tube o.d. and the water. The

condensation heat-transfer coefficient on the tube Id. should be much higher

and, therefore, not contribu~ to the overall thermal resistance.

The collector heat output (qcout.)could also be adjusted by varyfng the

absorptivity (AIF) of the collector absorber surface. A lower value ofO.90

was used (manufacturer’s publfshed value was 0.95) to decrease the collector

output ti the apparent msasured output.

The stirage temperature swfng was ~djus~d wfth the slmrage heat capacity

term (sCPM).The total heat capacf~y of storage was about 55 Btu/h “F in the

test cell, but only 45 Btu/h “F was dcurmlned to be effective. The

temperature level of storage was adjusted by varying the neat transfer between

the stirage and the room (US). The value that gave the best agreemnt with

nm?asurementswas ab~t 1.5 Btu/h “F ft~, whr;ch seera?da little low. The

storage tank, however, was bright aluminum with two sides agafnst the corner

of the @st cell, conditions that make practical evaluation of this parameter

dfflIcult.

Because the pfpes and the varfous accunu’iatorsfnslde the test cell are

unflsulated, a sfzable fractfon of the heat from the system is dmped directly

fnto the room. The parameter controlling the heat flow in the simlatlon

model Is the second pfpe heat-loss coefficient (UP2). A rather large value of

0.6 Btu/h “F ft~ was used tu obtafn a fair comparison of measured and

calculated roan temperatures.

The computer slwlatfon mdel described abo/e and the Input parameters

that went Into It seen to gfve a qood prediction of the performance of an

actual vapor-transport systwn. Further work on the tmdel will probably

6



provide a better understanding

pft)~~ md the model , at this

ann~~alperformance estimate of

SENS1TIVI17 STUDIES

cf systems of this type; hwever, the computer

point, seesaa~quate to provide a realistic

this system for several cllmatis.

Following the valIdatfon stuo, a sensitivity stu~ was conducted to

determine the perfomame of a vapor transport systm in several climates.

The cities chosen for analysls ~ro tie four clties used in the Active Program

Research Requirement (APRRJ Resldental Systems Evaluatlon. lhese cities were

Madison, Ulsconsin; Uashfngton, D.C.; Phoenix, Arizona, and Denver, Colorado.

In addftion, Albuquerque was fncluded because of Its proxlmity to Los Alamos

and Its Ideal clfm~ for solar heatfng.

The base case parameters for this stui~ are fncluded In the second column

of Table II. In general the same paramters were used as in the val Idatlon

study except for the parameters ilwolvlng the storage geometry and the pipe

heat loss b +Je room. For this study we assured that the storage WOU1d

consist of 18-in.-diameter tubes filled with k~ter. Hlth a heat storage

capac’~tyof 45 Btu/h ft~ and a heat-transfer coefficient betwen the

stiraqe surface and the room of 1.5 Btu/h ‘F ft~, the value of US WOU1d

be 4.0 Jtu/h “F ft~. In addltlon, the number of uninsulated pipes Insfde

the room ,fasassumed to be small so that a value of UP2 ■ 0.1 was assumed

Instead of the value of 0.6 used in the validation study.

The sensltlvlty study involved the variation of five Input parameters:

the CO1lector area (AC), collector tilt (TILT), storage heat capacfty (SCPM),

5tOra9e heat-transfer coefficlent (US), and condenser heat-transfer

coefficient (UH).

The results for the paramter variation of CO1lector area are given In

Table III and fn t-lgs.17a-c. A house with a floor area of )500 ft2 and a

heat 10SS Of 8 BW/day “F ft2 MS assumed. The load-collector ratfo (LCZ)

Kas then

LCR ● 15UO*8/AC .

For buildings with different loads, the equivalent collector area would be

AC ~ LOAD/LCR .
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The solar savings f?actlon (SSF) Is plotted as a function of collector area In

Vig. 17a. The S5F is &fined as

SSF=l - qaux/qd .

Mere, qd Is the building heat loss if the roan temperature was at 65”F. The

nomfnal collector area in the remafntir of the sefisitivftystudies was 250

ft2m Ulth this collector area, the solar savfngs fractfon varies frcnn

48.22 fn Madison to 90.5% In Phoenfx.

The energy utllfzti per year Is plotted as a function of CO11ector area In

Fig. 17b. The energy utilized Is &ffned as the enwgy delfvered to the space

mfnus the energy ven~d when the room temperature reached 75°F or

qu = qdel - qvt .

At the nomfnal CO11ector area of 250 ft2, the energy utilfzed varfes from

206,600 Btu/ft~/yr In Madison to 340,600 Btu/ft~/yr in Albuquerque.

The system efficiency is plotted as a function of collector area in Fig.

17C. 7he system efficiency is defined as the energy delfvered divided by

fncldent solar energy

eff = qdel/qinc .

The efficiency fs useful in ccmparfng results with other systems and for

evaluating the perfonmnce of a vapor systim for other functfons such as

domestic wa~r heating. The efficiency varies from 48.2% in Madison to 55.C%

in Ph@nix for the nomfnal collector area.

The results for the variation of collector tilt are given In Table IV and

plotted In Ffgs. 18a-c. The curves shav that the optlnum angle Is very flat,

with the nuxfmum solar savfngs fraction occurrfng at about 20 degrees greater

than latltude and the maxinum efficiency at about 10 degrees greater than

latftude. Using the collector In a vertical posltion results in a performance

decrease that varfes from 18% in Madison b 5% fn Phoenix. This performance

decrease WOU1d vary with CO1lector area. However, a vertfcal collector on a

space heating sys~m does not produce an overheating problem In sumner.



The effect on performance of varyl ng the heat capacfty of sWage Is given

in Table V and Figs. 19a-c. As storage heat capacity Is Increased, the

average operating temperature of the systim Is reduced and the system

●fficiency is Increased. In addition, the roan temperature swing 1s reduced

and the amount of vented ener~ is decreased. An average stirage heat

capacity for an atiiYe solar ener~ system wul d be about 15 Btu/ft~ “F.

The performance increases about 202 1f ,1storage heat capaci& of 45

Btu/ft~ “F Is Incorporated. He can real Ize a further performance

Increasa averaging 92 Men R increase the storagz heat capecf~ to 105

Btu/ft2 ‘F.

The sensitivity to the change In t!$estirage heat loss coefficient is

showm in Table VI and Figs. 20a-c. The results shu that, beyond a value of

2.0 Btu/h Hz “F, there is very llttle change In perfornmnce. ~~s is

good becausecthe bue value of the paremcter Is uncertain. The ncnninalvalue

2 “F) Is abcwt opt:numof 4.0 Btu/h ft~ ●F (wtth a SCPM = 45 Btu/ftc

for solar savings.

The last paramter Investiga~d was the condenser heat transfer

ccwfflcient (UH) or the conductance between th,?vapor in the tubes of the

concknser and water on the outside of the tubes. The results are shcm in

Table VII and Figs. 21a-c. Uith a self-paping system, this coefficient

controls the &mperature difference and, hence, the pressure d!fference

between the collector and the accumulator sides of the system. The condenser

will autcmtic~l 1y flood until the sys~rn can achieve the pressure dlfference

required to push the condensate up to the accumulator. The experimental value

Of 7.0 Btu/h ft; “F obtiined for the test cell is high up on the

performance cumeo For self-planpingsystems with higher Iift requiremwts,

the value would automatlcally be lower even if the condenser area were l,~rger

because of the flooding of W condenser. A wchanlcally-punped systcm COU1d

achieve the hfgher perfornmcc with the larger concknser coefficients becinuse

the.con~nser can be punped dry. A coefficient of 20 Btu/h ftc2 “F would

Increase the SSF by an average of 42, which could be achieved with a largo

concknser and a mchanical pump.
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AC
ALF
CL

R
EC
EX
eff
6L
ft$
H
LOAO
LCR
qaux
qcout
qd
qdel
qinc
qu
qvt
SCPM
SW

#OUT

RM
TRMIN
TRMMAX
TILT
UB
UH
IJpl
UP2
us
WCP

Coilector area
Collector absorptivity
Cell heat-loss coefficient b adjacent @st cell
Collector mass heat capacity
Degree day
Collector ml ssivity
Glazing extinction coefficient
System efficiency
Number of glazings
Square feet of c~llector
Collector heat-transfer coefficient between absorber and fluid
Buildfng heat-loss coefficient
Load CO11ector ratio
Auxiliary heat
Col1ector heat wtput
Building heat demand at TRIWN
Heat delivered to building by solar energy sys&aI
Solar energy incidenton collector
Heat utilized by bullding
Heat vented when building reaches TRJWX
Storage mass heat capacity
Solar savings fraction
Collector absorber Wuperature
Collector fluid outlet temperature
Storage @mperature
Room temperature
Minunwm room temperature
Plaximunroan Wperature
Col1ector ti1t from horizontal
Collector back heat-loss coefficient
Condenser heat-transfer coefficient
Outside pipe heat-loss coefficient
Inside pipe heat-loss coefficient
SWage heat-loss coefficient
Col12ctor flew rate
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TABLE I

COMPARISON BETUEEN MEASURED AND CALCULATED DAILY ENERGY
CELL NC. 8

JOAY SUN AUX COLL LOAD
~m ~ &~~

1
2
3
4
5
6

:

1:

;;
1!
16
17
18
19
20

;;
23
24
25
26
28
29
30
31

1261 1261 657
901 901 908
1970 1970 B4a
1901 1901 413
1919 1919 197
19!! 1914 131
1941 ]941 86
1949 1349 81
1798 1798 144
1942 1942 223
1602 1602 366
1058 1058 798
;429 1429 1009
1986 1986 828
993 993 947
2076 2076 1007
1985 1985 851
2074 2074 624
I408 1400 ?47
1126 1126 875
1777 1777 816
2112 2112 559
2079 2079 288
1667 1667 193
2092 2092 26A
2145 2145 176
2128 2128 72
2112 2113 121

TOTAl 4!?345 49346 14229
AVERAGE 1762 1762 508

7ocl 131 519
829 $ -69 220
731 218 343 722
348 182 888
184 125 ;2 967
129 125 72 1012

20 993
1% -;: 925
181 -98 -;: 889
260 -64 -42 966

-154 -179 700
:E -245 -180 217
926 266 626
747 ;: 235 9C15
858 -305 -252 169
972 283 251 901
742 167 101 872
596 87 943
710 -268 -2::
817 -196 -:73 :0?
761 212 171
538 243 229 1:0?
279 208 149 1104
216 -123 -111 810
199 196 116 1045
146 178 96 1126
138 -38 1203
176 :: 30 1172

13428 1361 1229 22474
480 49 44 803

556
~i2
943
919
935
927
917
917
842
8!37
655
398
661
909
308
924
990
918
534
379
7y5
984
1006
751
1008
i038
977
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1329

353b3
1263

1125
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TABLE 11

CWPUTER MOOEL INPUT PARAMETERS
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Input Parameter study stuQ

LOAJ
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LCR
W?IIN
TRM!AX
TILT
UCP
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Ec

k
CM
UB
H
SCPM
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UH
W 1
UP2

‘F
cktgrees
Btu/h fit “F
Btu/h “F

In-1

!
Btu/ft ●F

i

Btu/h t ‘F
Btu/h t “F

[
Btu/ft F

I

Btu/tI t “F
Btu/h ft “F
Btu/h ft ‘F
Btu/11 ft “F

20.3
22.2
1.28
65
%
36
50
0.16

WO

!.30
1
0.3

E
1.5
7
0.05
0.60

500
250

6;
75

LAT+20
50
0
0.90
0.10

!.30

;.3

:!
4

:.05
0.10
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Fig. 2. Schematic of vapor-transport test cell with
self-pumping condensate return.
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Fig. 4. Detailed temperature data obtained from vapor.
tranSpOPt teSt cell on January 7, 1984,
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system.
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Fig. 10. Dally comparison of measured and predicted

collector output from Test Cell 8.
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Fig. 11. Dally coaparlsonofnwasured and predicted
auxiliaryenergy from Test Cell 8.
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Fig. 12. Dally comparison of measured and predicted
load from Test Cell 8.
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Fig. 13a-d. Hourly compar !sun of meastiredand predicted temperatures
from Te$t :ell 8 for January 1-16, 1984.
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Fig. 14a-d. Hourly comparison of measured and predicted temperatures
from Test Cell 8 for January 16-31, 1984.
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Fig. 17n-c, System performancefactors for five cltles as a funct{w~
of collector area. Building load Is 12,000 BtWday ‘F.
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Fig. 18a-c. System performance factors for five cltles as a function

of collector tilt.
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Fig. 19a-c. System perfom~ance factors for five cltles as a function
of storage heat capac~ty,



!= bcm’m9Car’’lclm, kva rT v

20. a.

F“’
-?- ml-m- mrrlclrNl , ivwta r?i w

20,C.

Wa

Fig, 2(la-c.Systcm performance factors for five citlcs as a function
of storage heat-loss coefficient.

32



. .

1s9

M

21.a.

21.C.

Fig. 21a-c. System performance factors for five cltles as a function
of condenser heat-transfer coefficient.
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